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In this work, we study the phase separation of deeply quenched mixtures in which the diffusion coefficient
depends on the local composition fietd In one dimensiorilD), the system evolves until it reaches a spatially
periodic steady state, with a period that, for instant quenching, coincides with the wavelength of the mode of
maximum growth of the linear stability analysis. Similar results are obtained also when the temperature of the
system is the solution of the heat equation, but in this case the period of the periodic steady-state solution
increases as the heat diffusivity decreases. In 2D the concentration profile, after reaching a periodic configu-
ration similar to the 1D steady state, continues to evolve, forming single-phase domains separated by sharp
interfaces, which then thicken as the system tries to minimize its interfacial area. When the quench takes place
across, or near, the critical point, the drops merge to form filaments which later coarsen and grow. However,
when the quench takes place far from the critical point and near the metastable region of the phase diagram, the
length of these filaments decreases as the system becomes a collection of nucleating drops. The composition
field within and without these microdomains appears to be nonuniform and time-dependent even after the
formation of sharp interfaces, thereby contradicting the commonly accepted assumption of local equilibrium at
the late stage of the phase separation process. These results do not depend on the amount and the form of the
random noise, while they are strongly influenced by the conditions of the system at the boundaries, as the
morphology of phase separation becomes anisotropic and acquires a preferential direction when these condi-
tions are not uniform{S1063-651X98)14212-5

PACS numbg(s): 64.70.Ja, 64.60.Cn, 64.60.Ht

[. INTRODUCTION millisecond$ separation process, small microdomains ap-
pear, which later grow by diffusion and coalescefit@,11].
Phase separation of deeply quenched mixtures is a proth a recent theoretical worKL2], this process of drop forma-
lem of longstanding complexity. It can occur either by nucle-tion was described, generalizing the Cahn-Hilliard-Cook
ation (both heterogeneous and homogengausby spinodal model using a Flory-Huggins free-energy density, with a
decompositior{1]. The former process describes the relax-composition-dependent diffusivity. It was found that in 1D
ation to equilibrium of a metastable system, while the secondhe nonlinear terms saturate the exponential growth predicted
one is typical of unstable systems. Therefore, nucleation i§Y the linear theory, so that the concentration distribution
an activated process, where a free energy barrier has to @nds to a steady-state, periodic profile, with a wavelength
overcome in order to form embryos of a critical size, beyondcorresponding to the fastest growing mode of the linear re-
which the new phase grows Spontaneously; in most practicgime. In addition, this Steady-State pI’Ofi|e does not depend
cases, suspended impurities or imperfectly wetted surfaced the form of the initial perturbation to the homogeneous
provide the interface on which the growth of the new phasé&omposition profile.
is initiated [2]. In the present work, we intend to generalize the analysis
Contrary to nucleation, spinodal decomposition occursf [12], studying a 2D system and the effects of a nonuni-
spontaneously, without any energy barrier to be overcomd©rm, continuous quenching. In particular, we intend to com-
and involves the growth of fluctuations of any amplitude thatPare our results with those obtained by Kaetal. [7] and
exceed a critical wavelengtf8]. The classical theoretical Rogersetal. [13]. After briefly describing, in Sec. II, the
basis of this process is the Cahn-Hilliard-Cook thepsy,  theoretical basis of our work, in Sec. lll the equations of
genera"zing the previous approach by Van der Wéé]s motion are derived. Flna”y, after deSCflblng in Sec. IV the
which was later extended to include nonlinear effdét). results of our simu_lation, Sec. V is devoted to a few com-
In principle, nucleation and spinodal decomposition are funments and conclusions.
damentally different from each other, as metastable systems
relax via the activated growth of localized fluctuations of
large amplitude, whereas unstable systems do so via sponta-
neous growth of long-wavelength fluctuations of any ampli- In this section we will determine the governing equation,
tude. However, in practice, the distinction between the tweexplaining that our assumption of a composition-dependent
processes is rather murk§], as both the critical nucleus size diffusivity can be derived as a natural extension of some
and the critical fluctuation wavelength decrease as the tenwell-known previous works on spinodal decomposition.
perature quench increasgs. Our starting point consists of a simplified dynamical
Experimental studies on spinodal decomposition havenodel of a binary alloy, which is called modBlin critical
shown that at the end of an initial, very fadte., a few dynamicg14], in which the time evolution of the conserved

Il. THE GOVERNING EQUATIONS
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or_der pargmete(i.e.,_ the cpncentrati_olj qf_one of the con- Jeq/ RT= paXa+ ipXs , (5
stituents, in our cagés obtained by minimizing the “coarse-
grained” free-energy functional. whereu , and ug denote the chemical potential of species
andB in solution, respectively, i.e.,
.A. Gibbs free energy and'chemlcal potential | B 1 0(Cgeo) B 1 ﬁ(cgeo)
Consider a homogeneous mixture of two spediendB MA_ﬁa—CAv HBTRT ics

with molar fractionsx, and xg=1—X,, respectively, con-

tained in a closed system at temperatlirand pressur®.  Herec, andcg denote the mole densities, that is, the number
The eqUIIIbrIum state of this SyStem is such that it minimMIZeSof moles per unit volume, of Speciégand B, respective|y,
the “coarse-grained” free-energy functional, that is, the mo-andc=c,+c; is the total mole density. Clearlg,=ca/c

lar Gibbs energy of mixingAgeg, andxg=cg/c. From here we see that the two quantitigs
. =Xp and (ua— upg) are thermodynamically conjugated, that
Ageq=Yeq— (IaXaT IsXa), (1) is, (ua— ) =d(g/RT)/d¢. This result can be extendgd]

wheregg, is the energy of the mixture at equilibrium, while defining the generalized chemical potenyial

ga andgg are the molar free energy of pure spedieandB, 8(g/RT)  d(g/RT) a(g/RT)
respectively, at temperatufieand pressur®. In turn, Ageq B=— = V=5 (6)
is the sum of an ideal palg;y and a so-called excess part ¢ ¢ (V¢)
Gex, With and substituting Eqg1)—(3) into Eq. (6) we obtain
Agig= RT[XalnXa+ XgINXg], 2 ®

M:M0+|nm+\p(1—2¢)—a2v2¢, (7)
where R is the gas constant, while the excess molar free
energy can be expressed as where uo=(gs—ga)/RT.

The mole densities, andcg satisfy the continuity equa-
gexz RT‘PXAXB y (3) tiOI’lS, A B

whereW is a function ofT andP. This expression, which is
generally referred to as the Margules correlafib8], is gen- ——1tV-Jx=0, (8)
erally derived by considering either the molecular interac-
tions between nearest neighbdds] or summing all pair- 9
wise interactions throughout the whole systdii7]. In —+V-J5=0, (9)
addition, as shown in the appendix [d2], Eq. (3) can be
derived from first principles assuming that the- A and the
B—B intermolecular forces are equal to each other, i.e.
Faa=Fgg, S0 that theg—x, phase diagram is symmetric,
with ¥ dependent on Kaa—Fag). In the following, we
shall assume tha is fixed, so that the physical state of the
mixture at equilibrium depends only chandx, .

Finally, in order to take into account the effects of spatial Jc
inhomogeneities, Cahn and Hilliafd] applied an original —+V.cv* =0, (10

where the fluxed,=cava andJg=cgvg are the local rates
at which moles of species andB pass through a unit cross
section, with velocitiesr, and vg, respectively. Summing
Egs. (8) and (9) we obtain the continuity equation for the
total mole density,

idea by van der Waalf5] and introduced the generalized o
specific free energyg as where
1 * =
0= Geq— 5 RTE(VX0) (VXg), @ VT XAVAT XeVe v

is the mole average velocity.
wherea is a typical length of the spatial inhomogeneities in ~ Now we introduce the last assumption: the two species
the composition field. As shown by van der Wa$, ais  have the same density, so that mole- and density-based quan-
proportional to the surface tension between the two phasé#ies are proportional to each other. Consequently, as there is
[18] and is typically a length of order 0-10.01 um. An  no net convective flux, the average velocu_‘y_|s Zero, So
interesting discussion about this model can be found in Dethat Eq.(10) shows that the total mole densityis constant.
Genneq19]. In addition, considering that,=cx,, substituting Eq(10)

into Eq. (8) we obtain

B. Chemical potential and constitutive relation

A
Below a certain critical temperatufi,, corresponding to CW +V-J=0, (12)
values¥ =2, the molar free energy given by Eq2) and(3)
is a double-well potential, and therefore a first-order phasevhereJ is the diffusive flux, which is defined as follows:
transition will take place. Now, it is well known that the
molar free energy can be written Hb] J=CXaXg(Va—Vp). (13
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FIG. 1. Composition as a function of position for a critical in-
stantaneous quench =3 at different times, when a random per-
turbation with amplitudeS¢ = 0.025 is superimposed to the initial
composition=0.5. The space and time coordinategndt, are
scaled in terms of anda?/D, respectively. The curves correspond,
respectively, to times=0, 0.5, 1.0, 1.5, and 2.5.

The constitutive relation fod cannot be determined from
first principles and has to be based on some reasonable a
sumptions. Now, the velocities of the single specigsand
vg, are the sums of a convective part, (which is zero, in
our casg and a diffusive part, which in turn must satisfy the
Gibbs-Duhem relation identically,

XAVMA—'_XBV/*LB:O' (14)

Therefore, comparing Eq6l4) and(11), we conclude that it
is reasonable to assume

FIG. 2. Quenching depthl, and compositiong, as functions

Va=V*—DVyu,, (150  of position at different times for heat diffusivity=D. The curves
correspond to times=100, 200, 500, 1000, and 20@@iven in
Vg=V*—-DV ug, (16) a?/D units). The spatial coordinate varies between 0 andalO0

composition varies between 0 and 1, while the quenching depth
whereD is a composition-independent diffusion coefficient. solves the heat equation with;=2 and¥,,=3.
Consequently, the expression fbbecomes

d¢

DV -{-V¢+¢(1-$)[a*VV2p+V(¥(2¢—1))]}
Finally, considering Eq(.7), we find that the diffusive flux +V.j=0 (19
can be expressed as a functiondfiwhere ¢=x,) only: '
wherej is the contribution to the material flux due to thermal
fluctuations, which satisfies the fluctuation-dissipation theo-
rem[20],

g: —DV¢+Dop(1—¢)[a’VV2¢p+2¥V ¢
+(2¢—1)VV¥], (18

which coincides with the expression fdrused in[12]. The (j(r,1))=0,

termDV ¢ in Eq. (18) represents the regular diffusion flux,

while the last term vanishes for small concentrations of ei- )

ther solvents §—0 or ¢—1) and for ideal mixturesg DI )= — —Dld(1— ) S(r—r" ) S(t—t’
=¥ =0). Note that thea® term is always stabilizing and is (Di(r,t)) n $(1=¢) )& ),
relevant only at small length scales, whie is a known

function of the temperature, and near the critical temperature . s
T, it is proportional to Ty—T). with the brackets indicating ensemble average amt&not-

ing the number density, that is, the number of particles per
unit volume. Trivially, if we also assume that the tempera-
ture quench is instantaneous, so that the temperature is uni-

Substituting Eq(18) into Eq.(12), we obtain the follow- form within the system an® is constant, this equation re-
ing governing equation: duces to the one considered[it2].

C. Dynamical model and scaling
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Instanteneous quenching of mixture with average composition ¢ = 0.5.

time = 40 time = 50

time = 400 time = 1000

FIG. 3. Steady-state composition as a function of position for
different values of the heat diffusivityy=c (i.e., instant quench-
ing), 10D, 1D, and 0.D, respectively. The spatial coordinate var-
ies between 0 and 180 while composition varies between 0 and 1.

Since the only mechanism of mass transport that is con-
sidered here is diffusion, the length scale of the process is thi
microscopic lengtla, so that we can introduce the following
scaling:

& = 8 A e o

FIG. 4. Composition as a function of position for a critical in-
. r _ D stantaneous quench=3 at different times. The size of the system
r=—, t=—t. is 10X 100a, with periodic boundary conditions. Snapshots cor-
respond, respectively, to timeas=20, 60, 100, 500, 1000, and
2000, expressed in?/D units. The gray level varies linearly be-
Therefore, the continuity equation becomes tween black and white, corresponding to concentratigrses,,
and ¢ = ¢3,, respectively.

J ~ ~
%% %.3=0, (20) _ , , , _
at where ¥ is a function of T, this scaling would introduce
additional terms in the governing equation, unnecessarily
where complicating the analysis.

j:_v¢+¢<1_¢)v[v2¢+\1}(2¢_1)]+1 @) Ill. NUMERICAL RESULTS

with We solved Eq.(20) using an explicit finite difference
e method on a uniformN XM two—dimensional grid with
(J(r,1))=0; spacing[(iAx,jAy),i=1N, j=1M] and time discretiza-
tion [nAt,n=1,2,...], with Ax/a,Ay/a~0.5-2, and
G Oj 1)) =—2e21p(1—p)S(r—r")8(t—t"), At/(a?/D)~0.1-0.001. We adopted a cell-centered repre-

(220  sentation for the concentration variablﬁ‘j(t), and dis-
cretized the right-hand side of ERO) in flux conservation

with e =(na®)~*2 Many recent articles have used the scal-form, using a second-order accurate approximation of the
ing first proposed by Grarst al.[21], where space is scaled spatial derivatives. The equations are advanced in time, us-
through the wavelength corresponding to the fastest growinghg a straightforward explicit Eulerian step, and we chose the
mode of the linear regime. Near the critical point, this lengthtime stepAt in such a way to satisfy the CFL stability con-
is much larger thara, and in our case it equals/ V¥V —2 dition for the discretized equations. This way, the numerical
[see Eq(23)]. However, for deep quenches, thi@ —2 fac-  scheme iSO(Ax?,At) accurate. The background noise was
tor is anO(1) quantity, and can therefore be omitted. In simulated generating a random concentration field of ampli-
addition, in the slow quench case, which we consider hereude,



PRE 58 DIFFUSION-DRIVEN PHASE SEPARATION OF DEEPL. .. 7695

07

time = 100

06

05 +

04 r

03

02

01 r

time

FIG. 6. Separation deptls, as a function of time for a critical
instantaneous quench=3 and different amplitudes of the back-
ground noise, 6¢p=0.5x10"1, 0.5x10°2, 0.5x10° %, and
0.5X 104, with time expressed in terms af/D.

using a split-step method in time and a pseudospectral col-
location method in spaceAs we can see in Fig. 1, identical
results were obtained, as initial, exponentially growing insta-
FIG. 5. Composition as a function of position at different times bilities Ere Iatelrl sart]urated by th? efcflt_-)ct_t;)f _the no(;lllnear
after the temperature of the upper and lower walls has beeﬁerms' ventually, the concentration distribution tends to a

quenched from¥,=2 to ¥,=3, with heat diffusivity «=10D. steady, periodic profile, with a period and an amplitude

The size of the system is 28& 100a, with periodic boundary con- Which correspond to the fastest growing mode of the linear
ditions in the horizontal direction, and no-flux boundary conditions'€9ImMe, 1.€.,

in the vertical direction, to simulate a long, horizontal tube. Snap-

shots correspond, respectively, to tintes100, 200, and 400, ex- A= 2ma 23)
pressed ira?/D units. The gray level varies linearly between black o v—_2'

and white, corresponding to a concentratiofs ¢>§q, and ¢

= gy, respectively.

Qualitatively, the relaxation time that is needed to reach
steady state also agrees with that obtainedli, i.e., 7,
_ € =\3/D.
o= (Ax/a)(AtD/a?) ~0.1-0.01, Our next step was to study a critical quench where tem-
perature, and therefor#, is a known function of position

which was uncorrelated both in space and in time, so as t8"d time. Since near the critical point we havex(T
satisfy Eq.(22). That means that at each time step a spatially~ Tcd» thenW(x,1), with O=x<L, canzbe ot;taln.ed from
uncorrelated noise was added to the concentration field, arif#€ heat conduction equatiostV'/ot=ag“W/Jx*, with ini-
was then subtracted at the next time step, only to be replacéfftl and boundary conditions¥(x,0)="¥; and ¥(0})
with another spatially uncorrelated background noise of the= ¥ (L.t)=",, describing heat propagation from the walls

same amplitude. of the container towards the center. Typical solutions for
In the following, we present results corresponding to tem-#(x,t), together with the corresponding(x,t), are given
perature quenches where the Margules param#tein-  In Fig. 2, where no-flux boundary conditions have been ap-

creased fromV;=2 (which is its critical valug to ¥,,= 3. plied. From thg sequence of plots in Fig. 2 it is easy to see
Similar results were obtained when we performed simulafhat the instability propagates from the edges towards the
tions with ¥,,=2.1 and 2.3. Two cases were consideredcenter of the cell, growing without changing its length scale
with uniform initial concentration fields,= 0.5, correspond- until the equilibrium state is reached. As shown in Fig. 3, the

ing to a critical quench, anghy= 0.4 (off-critical quench. steady-state Congentratiqn distribution appears to be _periodic
across the domain, provided, naturally, that the cell kiz®

either much larger than, or an exact multiple of, the droplet
size; if none of these conditions is satisfied, the periodic
First, we validated our numerical scheme by solving thesteady-state solution can never be reached, as it is evident
one-dimensional version of EO0) with periodic boundary from the concentration profile at the bottom of Fig. 3. The
conditions, considering an instantaneous, critical, and uniperiod of the steady-state solutions decreases as the thermal
form quench with¥ =3 and ¢,=0.5. As we mentioned diffusivity « increases, until, whea>D, it becomes equal
above, in this case our equation and boundary conditiont the period\y obtained for instant quenching, with
become essentially the same as those usg¢ddh the only  —oo. Clearly, since in most cases we have D, this result
difference being that the initial conditions and the numericalshows that the assumption of instant quenching is very rea-
techniqgue employed here are differeauri et al. [12]  sonable. Our results can be considered an extension of those
solved the problem for periodic and pulsed initial conditions,obtained by Carmesist al. [22], who studied the influence

A. One-dimensional case
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FIG. 7. Initial timety as a function of the background noigeé (a) and the quenching depthV(—2) (b). Points refer to the results of
numerical simulations witkpo= 0.5, while the continuous line represents the correlatign(A— BIndg)/(¥—2)°, with A=22.5, B=3.7,
andc=2.1.

of a continuous quenching on the initial stages of spinodaf'distance” of the single-phase domains from their equilib-
decomposition by using the linearized theory of spinodal defium state, i.e.,
composition.

(24)

< d(r)— oo >
Ded 1) — o/’

First, Eq.(20) was solved for an instantaneous, critical where ¢y is the initial composition and the angular brackets
quench, with periodic boundary conditions. Our simulationsindicate volume average. Hekg is the steady-state com-
showed that at first the system tends to form circular dropgosition of the theA-rich phase,gbg\q, or the B-rich phase,
whose size) o, equals that of the one-dimensional domains.¢qu’ depending on the local compositia#(r),

However, unlike the one-dimensional case, this is not the

steady-state solutiorisee Fig. 4, as the system rapidly ¢>eq(r):¢§, H(r)> o,

evolves towards the formation of single-phase microdomains a
separated by sharp interfaces, which then merge to form fila-
ments. This bicontinuous infinite-cluster morphology has
been observed experimentally in binary fluid mixtures by B I . A
Cumminget al. [23], and has been numerically simulated, F%r V=3, the e_qunlbrlum comp(_)smons a_@eq_ 0.92 and
among others, by Rogers, Elder, and Dd4a] and by Far- %eq=0-08. In Fig. 6 the separation depsns plotted as a

rell and Valls[24]. Our simulations show that this dendroid- function of time, showing that the phase separation process
like structure continues to deform, increasing its thicknessCan be divided into three stages. During the first stdge,
and, above all, further reducing the total area of the interface=to, the concentration remains approximately constant,
So, for example, microdomains of one phase entirely surl-€-» there is no phase separation; then, figrt<t,, the
rounded by the other phase evolve towards assuming goncentration changes rapidly, with the exact valuesqof
spherical shape. However, contrary to the behavior of th@ndt; defined such that this rate of change is larger than a
mixtures of totally immiscible liquids, these small, isolated given critical value; finally, during the third stagezt,, the
drops continue to deflate even after they become spherica}éparation deptaincreases much more slowly. As shown in
until they diffuse out completelysee the evolution of the Fig. 7, the value of, depends on the depth of the tempera-
drop located in the lower left part of Fig).4 ture quench, ¥ —2), and the amount of the random noise,

As expected, a different morphology is obtained ford¢, through the correlatioty=(A—BInd¢)/(¥ —2)°, where
nonisotropic systems. For example, in Fig. 5 we show thé®, B, andc are constants that depend on the valuggf In
concentration distribution in a system with periodic bound-the second stage, the time intervai{t,) appears to be
ary conditions in the horizontal direction, and no-flux bound-independent of the random noigsee Fig. J, and is approxi-
ary conditions at the walls in the vertical direction, therebymately equal to the relaxation timg=»\3/D. Finally, dur-
simulating the behavior of a long horizontal tube. As theing the last stage,>t,, the separation depthcontinues to
walls of the tube are quenched, the temperature of the wholehange, although more gradually, tending asymptotically to
system changes in time towards its steady state. As expectell, indicating that, although the system is composed of single-
the morphology of the system is composed of “serpentines”phase domains separated by sharp interfaces, the composi-
with a well specified horizontal preferential direction, form- tion inside these domains is not equal to its final equilibrium
ing typical striped pattern as in Sagui and Dd4]. As in  value. The same conclusion was reached even when all
the one-dimensional case, the thickness of these stripes ipoints adjacent to the interfaces were removed; for example,
creases as the heat conductivity of the system decreases. when the regions withe(r) — ¢,/ <0.1 were not included in

As a quantitative characterization of the decomposinghe definition (24) of the separation depth, the resulting
system, we define the separation degthmeasuring the curves differed from those in Fig. 6 by 3% or less. There-

B. Two-dimensional case

dedl)=deq:  H(1)<do.
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FIG. 8. Characteristic size of the microdomaig, defined
through Eq.(25) and expressed ia units, as a function of time,
expressed im?/D units, after an instantaneous critical quenkh
=3. The length scal® is compared tdR1, representing the char-
acteristic size of the microdomains as defined by Desail. [13].
The continuous line represents the correlafioa 1062,

fore, the local equilibrium assumption, stating that no change
in composition occurs after the formation of sharp interfaces,
is not valid, which implies that most of the scaling concepts
should be revised. Although an identical conclusion was
reached by Tanaka and Arak26] in the case of fluid sys-
tems, this is the first time to our knowledge that a strong
violation of local equilibrium has been observed for spinodal
decomposition under small, or zero, fluidity conditions.

0.65 T T T T T
t= 1000

c(r

time = 1000

FIG. 10. Composition as a function of position f#=3 at

different times after an instantaneous off-critical quench with
=0.4. The size of the system is 1@R8 100a, with periodic bound-

ary conditions. Snapshots correspond, respectively, to titnes
=20, 60, 100, 500, 1000, and 2000, expressmﬂzl units. The
gray level varies linearly between black and white, corresponding to
a concentrationsh= ¢4, and ¢= 5, respectively.

During the last stage of the separation process, the char-

t

9(2)

FIG. 9. Radial pair correlation functio(r,t), after an instan-
taneous critical quenc =3, as a function of for differentt (a)
and as a function of the self-similar parameterr (aDt) ~ 3 (b).

acteristic size of the microdomains appears to be indepen-
dent of the depth of the temperature quench and of the back-
ground noise and, as shown in Fig. 8, it grows according to
he § law predicted by Lifshitz and Slyozop0]. In Fig. 8

we have plotted the characteristic length,

> (A (DIK)
Rt)=a———,

> b

(29

where ¢,(t) is the Fourier transform of the concentration
distribution field ¢(r,t), showing that R(t)x=(aDt)*?.
These results are in agreement with those of Desail.
[13], who have defined the typical siEg as the first zero of
the radial pair correlation functio@(r,t) — ¢, where

1 2
C(r,t)=\/ﬂfo (p(r'+r,t)d(r',1))do, r=(r,0).
(26)
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In Fig. 9,C(r,t) is plotted as a function af for different  droidlike structure continues to deform, increasing its thick-
t, showing that the different curves collapse into a self-ness, and, above all, further reducing the total area of the
similar solution,g(z), with z=r(aDt) %3, interface. In particular, during the late stage of the process,

We have also studied the phase separation due to an offae domains coarsen as a 1/3 power of time. Similar results
critical quench, in whichgy=0.4, i.e., in which there is are obtained both for critical and off-critical quenches.
more A than B. As expected, instead of interconnected do- Our results were compared with those obtained by Rog-
mains, we observe the formation of isolated drops of theers, Elder, and Deséi 3], who studied spinodal decomposi-
B-rich phase immersed in one large domain of theich  tion using the Cahn-Hilliard-Cook model both at early and
phase(see Fig. 10 in agreement with some previous theo- late times, and for critical as well as off-critical quenches.
retical[24,27,13 and experimentdR3] findings, and consis- Since the Cahn-Hilliard-Cook expression of the free-energy
tent with the experimental eviden¢@8] that stable emul- density is an expansion of the expression that we have used,
sions tend to form when a liquid mixture is quenched withinit is not surprising that during the early stages of the process

the metastable region of its phase diagram. our results were in perfect agreement wift8]. During the
last stage of the process, we found that the morphology of
V. CONCLUSIONS the system was also remarkably similar to that obtained by

) . ) . [13], apparently indicating that this result is independent of

~ In this work we have studied the spinodal decompositionthe expression of the free energy that has been used in the
in a binary mixture in which the diffusion coefficieo-  simulation. The influence of the physical model, instead, ap-
bility) depends on the local composition fiefil using an  pears to greatly influence the composition field within and
expression for the free energy of the system which includegyithout the microdomains, which, as evidenced in the plot of
its ideal(i.e., entropig part and its nonideal counterpaus-  the separation depth of Fig. 6, is not homogeneous and
ing Margules expressioninstead of the simpleg* form of  changes with time. The violation of the commonly accepted
the Cahn-Hilliard-Cook model and of the Landau theory ofassumption of local equilibrium, stating that no change in
phase transition. composition occurs after the formation of sharp interfaces, is

We have shown that a one-dimensional system will reachyerhaps the main contribution of this work, indicating that
a Steady State, ConSiSting of a periOdiC concentration prOfllg“hough the genera| behavior of phase Separa‘[ing Systems
independent of the initial perturbation. For instantaneougj.e., their morphology is self-similar and model-
quenches, the period of the steady-state solution is equal {idependent, the same is not true for the separation depth.
the fastest growing mode, in agreement with previous results
[12], while for slow quenches this period increases. This last
result is new.

In two dimensions, although at first the system will reach
a similarly periodic concentration profile, then it continues to  During this work, N.V. and R.M. were supported in part
evolve towards a stringlike morphology, trying to minimize by the National Science Foundation under Grant No. CTS-
the area of the interface between the two phases. This de@634324.
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