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Diffusion-driven phase separation of deeply quenched mixtures
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In this work, we study the phase separation of deeply quenched mixtures in which the diffusion coefficient
depends on the local composition fieldf. In one dimension~1D!, the system evolves until it reaches a spatially
periodic steady state, with a period that, for instant quenching, coincides with the wavelength of the mode of
maximum growth of the linear stability analysis. Similar results are obtained also when the temperature of the
system is the solution of the heat equation, but in this case the period of the periodic steady-state solution
increases as the heat diffusivity decreases. In 2D the concentration profile, after reaching a periodic configu-
ration similar to the 1D steady state, continues to evolve, forming single-phase domains separated by sharp
interfaces, which then thicken as the system tries to minimize its interfacial area. When the quench takes place
across, or near, the critical point, the drops merge to form filaments which later coarsen and grow. However,
when the quench takes place far from the critical point and near the metastable region of the phase diagram, the
length of these filaments decreases as the system becomes a collection of nucleating drops. The composition
field within and without these microdomains appears to be nonuniform and time-dependent even after the
formation of sharp interfaces, thereby contradicting the commonly accepted assumption of local equilibrium at
the late stage of the phase separation process. These results do not depend on the amount and the form of the
random noise, while they are strongly influenced by the conditions of the system at the boundaries, as the
morphology of phase separation becomes anisotropic and acquires a preferential direction when these condi-
tions are not uniform.@S1063-651X~98!14212-5#

PACS number~s!: 64.70.Ja, 64.60.Cn, 64.60.Ht
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I. INTRODUCTION

Phase separation of deeply quenched mixtures is a p
lem of longstanding complexity. It can occur either by nuc
ation ~both heterogeneous and homogeneous! or by spinodal
decomposition@1#. The former process describes the rela
ation to equilibrium of a metastable system, while the sec
one is typical of unstable systems. Therefore, nucleatio
an activated process, where a free energy barrier has t
overcome in order to form embryos of a critical size, beyo
which the new phase grows spontaneously; in most prac
cases, suspended impurities or imperfectly wetted surfa
provide the interface on which the growth of the new pha
is initiated @2#.

Contrary to nucleation, spinodal decomposition occ
spontaneously, without any energy barrier to be overco
and involves the growth of fluctuations of any amplitude th
exceed a critical wavelength@3#. The classical theoretica
basis of this process is the Cahn-Hilliard-Cook theory@4#,
generalizing the previous approach by Van der Waals@5#,
which was later extended to include nonlinear effects@6,7#.
In principle, nucleation and spinodal decomposition are f
damentally different from each other, as metastable syst
relax via the activated growth of localized fluctuations
large amplitude, whereas unstable systems do so via spo
neous growth of long-wavelength fluctuations of any amp
tude. However, in practice, the distinction between the t
processes is rather murky@8#, as both the critical nucleus siz
and the critical fluctuation wavelength decrease as the t
perature quench increases@9#.

Experimental studies on spinodal decomposition h
shown that at the end of an initial, very fast~i.e., a few
PRE 581063-651X/98/58~6!/7691~9!/$15.00
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milliseconds! separation process, small microdomains a
pear, which later grow by diffusion and coalescence@10,11#.
In a recent theoretical work@12#, this process of drop forma
tion was described, generalizing the Cahn-Hilliard-Co
model using a Flory-Huggins free-energy density, with
composition-dependent diffusivity. It was found that in 1
the nonlinear terms saturate the exponential growth predi
by the linear theory, so that the concentration distribut
tends to a steady-state, periodic profile, with a wavelen
corresponding to the fastest growing mode of the linear
gime. In addition, this steady-state profile does not dep
on the form of the initial perturbation to the homogeneo
composition profile.

In the present work, we intend to generalize the analy
of @12#, studying a 2D system and the effects of a nonu
form, continuous quenching. In particular, we intend to co
pare our results with those obtained by Kochet al. @7# and
Rogerset al. @13#. After briefly describing, in Sec. II, the
theoretical basis of our work, in Sec. III the equations
motion are derived. Finally, after describing in Sec. IV t
results of our simulation, Sec. V is devoted to a few co
ments and conclusions.

II. THE GOVERNING EQUATIONS

In this section we will determine the governing equatio
explaining that our assumption of a composition-depend
diffusivity can be derived as a natural extension of so
well-known previous works on spinodal decomposition.

Our starting point consists of a simplified dynamic
model of a binary alloy, which is called modelB in critical
dynamics@14#, in which the time evolution of the conserve
7691 © 1998 The American Physical Society
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7692 PRE 58VLADIMIROVA, MALAGOLI, AND MAURI
order parameter~i.e., the concentration of one of the co
stituents, in our case! is obtained by minimizing the ‘‘coarse
grained’’ free-energy functional.

A. Gibbs free energy and chemical potential

Consider a homogeneous mixture of two speciesA andB
with molar fractionsxA and xB512xA , respectively, con-
tained in a closed system at temperatureT and pressureP.
The equilibrium state of this system is such that it minimiz
the ‘‘coarse-grained’’ free-energy functional, that is, the m
lar Gibbs energy of mixing,Dgeq,

Dgeq5geq2~gAxA1gBxB!, ~1!

wheregeq is the energy of the mixture at equilibrium, whil
gA andgB are the molar free energy of pure speciesA andB,
respectively, at temperatureT and pressureP. In turn, Dgeq
is the sum of an ideal partDgid and a so-called excess pa
gex, with

Dgid5RT@xAlnxA1xBlnxB#, ~2!

where R is the gas constant, while the excess molar f
energy can be expressed as

gex5RTCxAxB , ~3!

whereC is a function ofT andP. This expression, which is
generally referred to as the Margules correlation@15#, is gen-
erally derived by considering either the molecular inter
tions between nearest neighbors@16# or summing all pair-
wise interactions throughout the whole system@17#. In
addition, as shown in the appendix of@12#, Eq. ~3! can be
derived from first principles assuming that theA2A and the
B2B intermolecular forces are equal to each other, i
FAA5FBB , so that theg2xA phase diagram is symmetric
with C dependent on (FAA2FAB). In the following, we
shall assume thatP is fixed, so that the physical state of th
mixture at equilibrium depends only onT andxA .

Finally, in order to take into account the effects of spat
inhomogeneities, Cahn and Hilliard@4# applied an original
idea by van der Waals@5# and introduced the generalize
specific free energyg as

g5geq2
1

2
RTa2~¹xA!~¹xB!, ~4!

wherea is a typical length of the spatial inhomogeneities
the composition field. As shown by van der Waals@5#, a is
proportional to the surface tension between the two pha
@18# and is typically a length of order 0.120.01 mm. An
interesting discussion about this model can be found in
Gennes@19#.

B. Chemical potential and constitutive relation

Below a certain critical temperatureTc , corresponding to
valuesC>2, the molar free energy given by Eqs.~2! and~3!
is a double-well potential, and therefore a first-order ph
transition will take place. Now, it is well known that th
molar free energy can be written as@15#
s
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geq/RT5mAxA1mBxB , ~5!

wheremA andmB denote the chemical potential of speciesA
andB in solution, respectively, i.e.,

mA5
1

RT

]~cgeq!

]cA
, mB5

1

RT

]~cgeq!

]cB
.

HerecA andcB denote the mole densities, that is, the numb
of moles per unit volume, of speciesA andB, respectively,
andc5cA1cB is the total mole density. Clearly,xA5cA /c
and xB5cB /c. From here we see that the two quantitiesf
5xA and (mA2mB) are thermodynamically conjugated, th
is, (mA2mB)5d(g/RT)/df. This result can be extended@4#
defining the generalized chemical potentialm,

m5
d~g/RT!

df
5

]~g/RT!

]f
2“•

]~g/RT!

]~“f!
, ~6!

and substituting Eqs.~1!–~3! into Eq. ~6! we obtain

m5m01 ln
f

12f
1C~122f!2a2¹2f, ~7!

wherem05(gB2gA)/RT.
The mole densitiescA andcB satisfy the continuity equa

tions,

]cA

]t
1“•JA50, ~8!

]cB

]t
1“•JB50, ~9!

where the fluxesJA5cAvA andJB5cBvB are the local rates
at which moles of speciesA andB pass through a unit cros
section, with velocitiesvA and vB , respectively. Summing
Eqs. ~8! and ~9! we obtain the continuity equation for th
total mole density,

]c

]t
1“•cv* 50, ~10!

where

v* 5xAvA1xBvB ~11!

is the mole average velocity.
Now we introduce the last assumption: the two spec

have the same density, so that mole- and density-based q
tities are proportional to each other. Consequently, as the
no net convective flux, the average velocityv* is zero, so
that Eq.~10! shows that the total mole densityc is constant.
In addition, considering thatcA5cxA , substituting Eq.~10!
into Eq. ~8! we obtain

c
]xA

]t
1“•J50, ~12!

whereJ is the diffusive flux, which is defined as follows:

J5cxAxB~vA2vB!. ~13!
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PRE 58 7693DIFFUSION-DRIVEN PHASE SEPARATION OF DEEPLY . . .
The constitutive relation forJ cannot be determined from
first principles and has to be based on some reasonabl
sumptions. Now, the velocities of the single species,vA and
vB , are the sums of a convective part,v* ~which is zero, in
our case!, and a diffusive part, which in turn must satisfy th
Gibbs-Duhem relation identically,

xA“mA1xB“mB50. ~14!

Therefore, comparing Eqs.~14! and~11!, we conclude that it
is reasonable to assume

vA5v* 2D“mA , ~15!

vB5v* 2D“mB , ~16!

whereD is a composition-independent diffusion coefficien
Consequently, the expression forJ becomes

J52cDxAxB“m. ~17!

Finally, considering Eq.~7!, we find that the diffusive flux
can be expressed as a function off ~wheref[xA) only:

J

c
52D“f1Df~12f!@a2

“¹2f12C“f

1~2f21!“C#, ~18!

which coincides with the expression forJ used in@12#. The
term D“f in Eq. ~18! represents the regular diffusion flux
while the last term vanishes for small concentrations of
ther solvents (f→0 or f→1) and for ideal mixtures (a
5C50). Note that thea2 term is always stabilizing and i
relevant only at small length scales, whileC is a known
function of the temperature, and near the critical tempera
Tcr it is proportional to (Tcr2T).

C. Dynamical model and scaling

Substituting Eq.~18! into Eq. ~12!, we obtain the follow-
ing governing equation:

FIG. 1. Composition as a function of position for a critical i
stantaneous quenchC53 at different times, when a random pe
turbation with amplitudedf50.025 is superimposed to the initia
compositionf50.5. The space and time coordinates,x and t, are
scaled in terms ofa anda2/D, respectively. The curves correspon
respectively, to timest50, 0.5, 1.0, 1.5, and 2.5.
as-

.

i-

re

]f

]t
1D“•$2“f1f~12f!@a2

“¹2f1“„C~2f21!…#%

1“• j50, ~19!

wherej is the contribution to the material flux due to therm
fluctuations, which satisfies the fluctuation-dissipation th
rem @20#,

^ j ~r ,t !&50,

^ j ~r ,t !j ~r 8,t8!&52
2

n
DIf~12f!d~r2r 8!d~ t2t8!,

with the brackets indicating ensemble average andn denot-
ing the number density, that is, the number of particles
unit volume. Trivially, if we also assume that the tempe
ture quench is instantaneous, so that the temperature is
form within the system andC is constant, this equation re
duces to the one considered in@12#.

FIG. 2. Quenching depth,C, and composition,f, as functions
of position at different times for heat diffusivitya5D. The curves
correspond to timest5100, 200, 500, 1000, and 2000~given in
a2/D units!. The spatial coordinate varies between 0 and 10a,
composition varies between 0 and 1, while the quenching de
solves the heat equation withC i52 andCw53.
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7694 PRE 58VLADIMIROVA, MALAGOLI, AND MAURI
Since the only mechanism of mass transport that is c
sidered here is diffusion, the length scale of the process is
microscopic lengtha, so that we can introduce the followin
scaling:

r̃5
r

a
, t̃ 5

D

a2
t.

Therefore, the continuity equation becomes

]f

] t̃
1“̃• J̃50, ~20!

where

J̃52“̃f1f~12f!“̃@¹̃2f1C~2f21!#1 j̃ , ~21!

with

^ j̃ ~ r̃ , t̃ !&50;

^ j̃ ~ r̃ , t̃ ! j̃ ~ r̃ 8, t̃ 8!&522«2If~12f!d~r2r 8!d~ t2t8!,
~22!

with «5(na3)21/2. Many recent articles have used the sc
ing first proposed by Grantet al. @21#, where space is scale
through the wavelength corresponding to the fastest grow
mode of the linear regime. Near the critical point, this leng
is much larger thana, and in our case it equalsa/AC22
@see Eq.~23!#. However, for deep quenches, theAC22 fac-
tor is an O(1) quantity, and can therefore be omitted.
addition, in the slow quench case, which we consider h

FIG. 3. Steady-state composition as a function of position
different values of the heat diffusivity,a5` ~i.e., instant quench-
ing!, 10D, 1D, and 0.1D, respectively. The spatial coordinate va
ies between 0 and 100a, while composition varies between 0 and
n-
he

-

g

e,

where C is a function ofT, this scaling would introduce
additional terms in the governing equation, unnecessa
complicating the analysis.

III. NUMERICAL RESULTS

We solved Eq.~20! using an explicit finite difference
method on a uniformN3M two–dimensional grid with
spacing@( iDx, j Dy),i 51,N, j 51,M # and time discretiza-
tion @nDt,n51,2, . . .#, with Dx/a,Dy/a'0.522, and
Dt/(a2/D)'0.1–0.001. We adopted a cell-centered rep
sentation for the concentration variablef i j

n (t), and dis-
cretized the right-hand side of Eq.~20! in flux conservation
form, using a second-order accurate approximation of
spatial derivatives. The equations are advanced in time,
ing a straightforward explicit Eulerian step, and we chose
time stepDt in such a way to satisfy the CFL stability con
dition for the discretized equations. This way, the numeri
scheme isO(Dx2,Dt) accurate. The background noise w
simulated generating a random concentration field of am
tude,

r

FIG. 4. Composition as a function of position for a critical in
stantaneous quenchC53 at different times. The size of the syste
is 100a3100a, with periodic boundary conditions. Snapshots co
respond, respectively, to timest520, 60, 100, 500, 1000, and
2000, expressed ina2/D units. The gray level varies linearly be
tween black and white, corresponding to concentrationsf5feq

A ,
andf5feq

B , respectively.
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PRE 58 7695DIFFUSION-DRIVEN PHASE SEPARATION OF DEEPLY . . .
df5
«

~Dx/a!~DtD/a2!
'0.1–0.01,

which was uncorrelated both in space and in time, so a
satisfy Eq.~22!. That means that at each time step a spatia
uncorrelated noise was added to the concentration field,
was then subtracted at the next time step, only to be repla
with another spatially uncorrelated background noise of
same amplitude.

In the following, we present results corresponding to te
perature quenches where the Margules parameterC in-
creased fromC i52 ~which is its critical value! to Cw53.
Similar results were obtained when we performed simu
tions with Cw52.1 and 2.3. Two cases were consider
with uniform initial concentration fieldf050.5, correspond-
ing to a critical quench, andf050.4 ~off-critical quench!.

A. One-dimensional case

First, we validated our numerical scheme by solving
one-dimensional version of Eq.~20! with periodic boundary
conditions, considering an instantaneous, critical, and u
form quench withC53 and f050.5. As we mentioned
above, in this case our equation and boundary conditi
become essentially the same as those used in@12#, the only
difference being that the initial conditions and the numeri
technique employed here are different.~Mauri et al. @12#
solved the problem for periodic and pulsed initial condition

FIG. 5. Composition as a function of position at different tim
after the temperature of the upper and lower walls has b
quenched fromC i52 to Cw53, with heat diffusivity a510D.
The size of the system is 200a3100a, with periodic boundary con-
ditions in the horizontal direction, and no-flux boundary conditio
in the vertical direction, to simulate a long, horizontal tube. Sn
shots correspond, respectively, to timest5100, 200, and 400, ex
pressed ina2/D units. The gray level varies linearly between bla
and white, corresponding to a concentrationsf5feq

A , and f
5feq

B , respectively.
to
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using a split-step method in time and a pseudospectral
location method in space.! As we can see in Fig. 1, identica
results were obtained, as initial, exponentially growing ins
bilities are later saturated by the effect of the nonline
terms. Eventually, the concentration distribution tends to
steady, periodic profile, with a period and an amplitu
which correspond to the fastest growing mode of the lin
regime, i.e.,

l05
2pa

AC22
. ~23!

Qualitatively, the relaxation time that is needed to rea
steady state also agrees with that obtained in@12#, i.e., t0

5l0
2/D.

Our next step was to study a critical quench where te
perature, and thereforeC, is a known function of position
and time. Since near the critical point we haveC}(T
2Tcr), then C(x,t), with 0<x<L, can be obtained from
the heat conduction equation,]C/]t5a]2C/]x2, with ini-
tial and boundary conditions,C(x,0)5C i and C(0,t)
5C(L,t)5Cw , describing heat propagation from the wa
of the container towards the center. Typical solutions
f(x,t), together with the correspondingC(x,t), are given
in Fig. 2, where no-flux boundary conditions have been
plied. From the sequence of plots in Fig. 2 it is easy to
that the instability propagates from the edges towards
center of the cell, growing without changing its length sca
until the equilibrium state is reached. As shown in Fig. 3, t
steady-state concentration distribution appears to be peri
across the domain, provided, naturally, that the cell sizeL is
either much larger than, or an exact multiple of, the drop
size; if none of these conditions is satisfied, the perio
steady-state solution can never be reached, as it is evi
from the concentration profile at the bottom of Fig. 3. T
period of the steady-state solutions decreases as the the
diffusivity a increases, until, whena.D, it becomes equa
to the periodl0 obtained for instant quenching, witha
→`. Clearly, since in most cases we havea@D, this result
shows that the assumption of instant quenching is very
sonable. Our results can be considered an extension of t
obtained by Carmesinet al. @22#, who studied the influence

n

-

FIG. 6. Separation depth,s, as a function of time for a critical
instantaneous quenchC53 and different amplitudes of the back
ground noise, df50.531021, 0.531022, 0.531023, and
0.531024, with time expressed in terms ofa2/D.
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FIG. 7. Initial time t0 as a function of the background noisedf ~a! and the quenching depth (C22) ~b!. Points refer to the results o
numerical simulations withf050.5, while the continuous line represents the correlationt05(A2Blndf)/(C22)c, with A522.5, B53.7,
andc52.1.
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of a continuous quenching on the initial stages of spino
decomposition by using the linearized theory of spinodal
composition.

B. Two-dimensional case

First, Eq. ~20! was solved for an instantaneous, critic
quench, with periodic boundary conditions. Our simulatio
showed that at first the system tends to form circular dr
whose size,l0 , equals that of the one-dimensional domai
However, unlike the one-dimensional case, this is not
steady-state solution~see Fig. 4!, as the system rapidly
evolves towards the formation of single-phase microdoma
separated by sharp interfaces, which then merge to form
ments. This bicontinuous infinite-cluster morphology h
been observed experimentally in binary fluid mixtures
Cumming et al. @23#, and has been numerically simulate
among others, by Rogers, Elder, and Desai@13# and by Far-
rell and Valls@24#. Our simulations show that this dendroid
like structure continues to deform, increasing its thickne
and, above all, further reducing the total area of the interfa
So, for example, microdomains of one phase entirely s
rounded by the other phase evolve towards assumin
spherical shape. However, contrary to the behavior of
mixtures of totally immiscible liquids, these small, isolat
drops continue to deflate even after they become spher
until they diffuse out completely~see the evolution of the
drop located in the lower left part of Fig. 4!.

As expected, a different morphology is obtained f
nonisotropic systems. For example, in Fig. 5 we show
concentration distribution in a system with periodic boun
ary conditions in the horizontal direction, and no-flux boun
ary conditions at the walls in the vertical direction, there
simulating the behavior of a long horizontal tube. As t
walls of the tube are quenched, the temperature of the w
system changes in time towards its steady state. As expe
the morphology of the system is composed of ‘‘serpentine
with a well specified horizontal preferential direction, form
ing typical striped pattern as in Sagui and Desai@25#. As in
the one-dimensional case, the thickness of these stripe
creases as the heat conductivity of the system decrease

As a quantitative characterization of the decompos
system, we define the separation depths, measuring the
l
-

l
s
s
.
e

s
a-
s

s,
e.
r-
a
e

al,

r
e
-
-

le
ed,
’’

in-

g

‘‘distance’’ of the single-phase domains from their equili
rium state, i.e.,

s5 K f~r !2f0

feq~r !2f0
L , ~24!

wheref0 is the initial composition and the angular bracke
indicate volume average. Herefeq is the steady-state com
position of the theA-rich phase,feq

A , or the B-rich phase,
feq

B , depending on the local compositionf(r ),

feq~r !5feq
A , f~r !.f0 ,

feq~r !5feq
B , f~r !,f0 .

For C53, the equilibrium compositions arefeq
A 50.92 and

feq
B 50.08. In Fig. 6 the separation depths is plotted as a

function of time, showing that the phase separation proc
can be divided into three stages. During the first staget
,t0 , the concentrationf remains approximately constan
i.e., there is no phase separation; then, fort0,t,t1 , the
concentration changes rapidly, with the exact values oft0
and t1 defined such that this rate of change is larger tha
given critical value; finally, during the third stage,t.t1 , the
separation depths increases much more slowly. As shown
Fig. 7, the value oft0 depends on the depth of the temper
ture quench, (C22), and the amount of the random nois
df, through the correlationt05(A2Blndf)/(C22)c, where
A, B, andc are constants that depend on the value off0 . In
the second stage, the time interval (t12t0) appears to be
independent of the random noise~see Fig. 7!, and is approxi-
mately equal to the relaxation timet05l0

2/D. Finally, dur-
ing the last stage,t.t1 , the separation depths continues to
change, although more gradually, tending asymptotically
1, indicating that, although the system is composed of sin
phase domains separated by sharp interfaces, the com
tion inside these domains is not equal to its final equilibriu
value. The same conclusion was reached even when
points adjacent to the interfaces were removed; for exam
when the regions withuf(r )2f0u,0.1 were not included in
the definition ~24! of the separation depth, the resultin
curves differed from those in Fig. 6 by 3% or less. The
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fore, the local equilibrium assumption, stating that no cha
in composition occurs after the formation of sharp interfac
is not valid, which implies that most of the scaling conce
should be revised. Although an identical conclusion w
reached by Tanaka and Araki@26# in the case of fluid sys-
tems, this is the first time to our knowledge that a stro
violation of local equilibrium has been observed for spino
decomposition under small, or zero, fluidity conditions.

FIG. 8. Characteristic size of the microdomains,R, defined
through Eq.~25! and expressed ina units, as a function of time,t,
expressed ina2/D units, after an instantaneous critical quenchC
53. The length scaleR is compared toR1, representing the char
acteristic size of the microdomains as defined by Desaiet al. @13#.
The continuous line represents the correlationR510t1/3.

FIG. 9. Radial pair correlation function,C(r ,t), after an instan-
taneous critical quenchC53, as a function ofr for different t ~a!
and as a function of the self-similar parameterz5r (aDt)21/3 ~b!.
e
s,
s
s

g
l

During the last stage of the separation process, the c
acteristic size of the microdomains appears to be indep
dent of the depth of the temperature quench and of the b
ground noise and, as shown in Fig. 8, it grows according
the 1

3 law predicted by Lifshitz and Slyozov@10#. In Fig. 8
we have plotted the characteristic length,

R~ t !5a
( „fk~ t !/k…

( fk

, ~25!

where fk(t) is the Fourier transform of the concentratio
distribution field f(r ,t), showing that R(t)}(aDt)1/3.
These results are in agreement with those of Desaiet al.
@13#, who have defined the typical sizeR1 as the first zero of
the radial pair correlation functionC(r ,t)2f0 , where

C~r ,t !5A 1

2pE0

2p

^f~r 81r ,t !f~r 8,t !&du, r5~r ,u!.

~26!

FIG. 10. Composition as a function of position forC53 at
different times after an instantaneous off-critical quench withf0

50.4. The size of the system is 100a3100a, with periodic bound-
ary conditions. Snapshots correspond, respectively, to timet
520, 60, 100, 500, 1000, and 2000, expressed ina2/D units. The
gray level varies linearly between black and white, correspondin
a concentrationsf5feq

A andf5feq
B , respectively.
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In Fig. 9,C(r ,t) is plotted as a function ofr for different
t, showing that the different curves collapse into a se
similar solution,g(z), with z5r (aDt)21/3.

We have also studied the phase separation due to an
critical quench, in whichf050.4, i.e., in which there is
more A than B. As expected, instead of interconnected d
mains, we observe the formation of isolated drops of
B-rich phase immersed in one large domain of theA-rich
phase~see Fig. 10!, in agreement with some previous the
retical@24,27,13# and experimental@23# findings, and consis-
tent with the experimental evidence@28# that stable emul-
sions tend to form when a liquid mixture is quenched with
the metastable region of its phase diagram.

IV. CONCLUSIONS

In this work we have studied the spinodal decomposit
in a binary mixture in which the diffusion coefficient~mo-
bility ! depends on the local composition fieldf, using an
expression for the free energy of the system which inclu
its ideal~i.e., entropic! part and its nonideal counterpart~us-
ing Margules expression!, instead of the simplerf4 form of
the Cahn-Hilliard-Cook model and of the Landau theory
phase transition.

We have shown that a one-dimensional system will re
a steady state, consisting of a periodic concentration pro
independent of the initial perturbation. For instantaneo
quenches, the period of the steady-state solution is equ
the fastest growing mode, in agreement with previous res
@12#, while for slow quenches this period increases. This
result is new.

In two dimensions, although at first the system will rea
a similarly periodic concentration profile, then it continues
evolve towards a stringlike morphology, trying to minimiz
the area of the interface between the two phases. This
s

Ho

in

er

ys
-

ff-

-
e

n

s

f

h
le
s
to

lts
t

n-

droidlike structure continues to deform, increasing its thic
ness, and, above all, further reducing the total area of
interface. In particular, during the late stage of the proce
the domains coarsen as a 1/3 power of time. Similar res
are obtained both for critical and off-critical quenches.

Our results were compared with those obtained by R
ers, Elder, and Desai@13#, who studied spinodal decompos
tion using the Cahn-Hilliard-Cook model both at early a
late times, and for critical as well as off-critical quenche
Since the Cahn-Hilliard-Cook expression of the free-ene
density is an expansion of the expression that we have u
it is not surprising that during the early stages of the proc
our results were in perfect agreement with@13#. During the
last stage of the process, we found that the morphology
the system was also remarkably similar to that obtained
@13#, apparently indicating that this result is independent
the expression of the free energy that has been used in
simulation. The influence of the physical model, instead,
pears to greatly influence the composition field within a
without the microdomains, which, as evidenced in the plot
the separation depths of Fig. 6, is not homogeneous an
changes with time. The violation of the commonly accep
assumption of local equilibrium, stating that no change
composition occurs after the formation of sharp interfaces
perhaps the main contribution of this work, indicating th
although the general behavior of phase separating sys
~i.e., their morphology! is self-similar and model-
independent, the same is not true for the separation dep
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